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2.4  SUBSURFACE FLOW

Subsurface flow in the SFWMM can be divided into four processes: infiltration and percolation,
canal seepage, levee seepage and groundwater flow.  Infiltration refers to the vertical movement
of water across the land surface and percolation is the recharge to the water table.  Canal-
groundwater seepage describes the movement of canal water into the adjacent soil (and vice-
versa) by virtue of the differences between the hydraulic head in the canal and that of the water
table.  Levee seepage is a process wherein surface water moves across a levee embankment and
ends up on a levee borrow canal (e.g., from WCA-3B to L-30 borrow canal).  Regional
groundwater flow (or simply groundwater flow) corresponds to the horizontal movement of
groundwater after all of the above processes have occurred.  The following four subsections
describe these processes in greater detail.

Infiltration and Percolation

Infiltration is the process by which water on the soil surface enters the soil.  Water may come
from rainfall and/or irrigation and increases moisture in the unsaturated zone or directly goes to
the saturated zone via percolation.  Percolation is the recharge to the saturated zone or the
amount of water crossing the water table.  In South Florida, where unconfined aquifer conditions
exist, the location of the water table determines the upper limit of the saturated zone.  Ponding
exists when the water table elevation exceeds the land surface elevation and the unsaturated zone
no longer exists.  Infiltration and percolation are assumed to be vertical processes.

The volume of infiltration is taken as the minimum of the following three quantities:
1. available water (above land surface) to infiltrate;
2. infiltration rate multiplied by grid cell area and time step; and
3. available void space between the water table and land surface.

Infiltration rates vary from grid cell to grid cell and were determined from the soil classification
scheme used for the entire model domain.  They range from a value of 9 to 100 ft/day.

Percolation is the amount of water that enters the saturated zone when field capacity (maximum
moisture content that can be stored in the unsaturated zone) is exceeded.

Canal-Groundwater Seepage

The interaction of canals with the water table can be modeled by quantifying the exchange of
surface water (in the canal) and ground water (in the aquifer).  Although generally referred to as
canal seepage, leakance or leakage, water can actually leave and enter a canal depending on the
relative stages of the local groundwater and the canal itself, hence the term canal-groundwater
seepage or canal-aquifer interaction.  Seepage is added (or subtracted) from the recharge term
which goes into the solution of the groundwater flow equations [Eq. (2.4.3)].  The volume of
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seepage into or out of the canal to or from the aquifer is calculated at each node where the canal
passes through for every time step.  Canal-groundwater seepage is given by

(2.4.1)

where:
CGSEEP =  seepage volume, (ft );node, t+1

3

             H =  water level at the node or grid cell through which the canal passes, (ft);node, t

        SWL  =  canal surface water level at the same nodal location as H , (ft);node, t node

       CHHC =  canal-aquifer conductivity or connectivity coefficient,node

                      (ft/day per foot of head difference);
                 DT =  length of one time step, (day); and
       RCAR =  length of canal within the node multiplied by the width of the canal, (ft ).node

2

Since RCAR represents the area of the canal bottom, it is necessary to multiply it by a factor of
1.4 in order to approximate the entire bed or wetted area of the canal at the particular node in
question, i.e., channel bottom plus side slopes.  Seepage is assumed to occur uniformly within the
wetted area of the canal.  By SFWMM convention, seepage volume is positive if there is inflow to
the canal and negative, otherwise.  Variable CHHC ranges from 0.01 to 9.00.

Levee Seepage

Levee seepage refers to the movement of groundwater beneath and through a levee, and into the
corresponding levee borrow canal or vice versa.  Investigations conducted by the Corps and
USGS  indicated that significant amounts of seepage occur from the Water Conservation Areas
across the major levees to the east.

Figure 2.4.1 shows the SFWMM representation of the total groundwater flow beneath a levee.  It
is the sum of the regional groundwater flow or underseepage (Q ) and levee seepage (Q ). US LS

Prior to version 2.1, groundwater flow was completely characterized in the SFWMM by
numerically solving the governing partial differential equation for transient flow in a two-
dimensional, anisotropic, heterogeneous, unconfined aquifer.  However, the level of discretization
(2 miles x 2 miles) available in the model was considered too coarse for modeling local
groundwater phenomenon such as levee seepage.  The model’s solution to the general
groundwater flow equations represents regional groundwater flow while an empirical levee
seepage equation is used to solve for levee seepage.  The levee seepage algorithm in the SFWMM
affords great flexibility because it does not require mixing spatial resolutions within the grid
system used in the model (Brion and Guardo, 1991).

The basis for the empirical equations representing levee seepage in the SFWMM is an
independent set of computer simulation runs using a two-dimensional (vertical plane) model,
SEEP2D (a.k.a. SEEPN).  Developed at the U.S. Army Corps of Engineers Waterways
Experiment Station, SEEP2D simulates steady-state subsurface flow through a multi-layered
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aquifer system (confined or unconfined) by solving the Laplace equation using Darcy’s Law
(Tracy, 1983; Biedenharn and Tracy, 1987).

Figure 2.4.1  Canal-Levee Configuration Representing a Typical Transect Used in Developing
Empirical Levee Seepage Equations in the South Florida Water Management Model

A concise description of the steps taken in establishing the preliminary empirical levee seepage
equations is outlined below:
1. Create a 2-D strip model for each selected (based on similar hydrogeologic characteristics)

levee cross-section. Based on Corps general and detailed design memoranda, levee
configurations and hydrogeologic properties were compiled and reformatted in accordance to
requirements of the SEEPN model.  The locations of the sixteen transects (along L40, L36,
L35B, L35, L37, L67, L33, L29 and L31N levees) used in this analysis are shown in Fig.
2.4.2.

2. Run SEEPN for different combinations of hydraulic heads and canal stages. Stages in the
water conservation areas, borrow canals and areas just east of these canals, that were deemed
representative of steady-state conditions (wet, dry, and average) for all transects, were
selected as input to the SEEPN model. Model output was summarized to determine the
capture rate (amount of total seepage beneath a levee that ends up in the borrow canal) for
each model run.

3. Propose empirical equations and derive regression coefficients for the equation relating
volume of water captured by borrow canal to total head gradient immediately across the levee
(local head gradient) and from cell-to-cell (regional head gradient). Consistent with Darcy’s
Law, the independent variables in the functional form of the regression equation were chosen
as head gradients, instead of absolute stages, since hydraulic gradients are the fundamental
physical parameter that determine movement of water in a porous media such as levees.
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Figure 2.4.2  Sections or Transects Across the Major Levees Used to Formulate Levee Seepage
Equations in the South Florida Water Management Model
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4. Incorporate  regression equations to SFWMM. This step involves the creation of a function
which calculates [Eq. (2.4.2)] seepage volume from a grid cell to a canal located in an
adjacent cell along the alignment of the N-S protective levee.

Using step-wise linear regression analysis, sixteen regression equations were established, one for
each levee, relating levee seepage and prevailing head gradients.  All equations were of the form:

(2.4.2)

where:
              Q =  unit levee seepage, (cfs/mi);seep

     $0, $1, $2 =  regression or levee seepage coefficients;
                )h =  head gradient across a levee representing the difference in the water levels1

                       inside a water conservation area and a levee borrow canal (local head gradient),
                       (ft); and
                )h =  head gradient across a levee representing the difference in the water levels on2

                       opposite sides of a levee borrow canal (regional head gradient), (ft).

During the regression analysis, several cross-sections were found to produce very similar
coefficients such that some of them were eventually grouped together and the analysis redone. 
Regression coefficients derived from this analysis were later referred to as levee seepage
coefficients.  Table 2.4.1 lists the ten sets of levee seepage coefficients used in the model.  These
coefficients were fine-tuned during model calibration.  Negative values resulting from the use of
these regression equations are zeroed out in the model and are due to the fact that these equations
are valid only for certain ranges of head gradients.

Table 2.4.1  Levee Seepage Coefficients ($ , $ , $ ) Used in the SFWMM0 1 2

Levee $$ $$ $$0 1 2

L-40 0.1 1.3 -0.7

L-36 2.0 -1.0 1.8

L-35B -0.2 1.0 -0.2

L-35A / L-35 / L-37 0.6 0.9 -0.2

L-67AC -1.8 131.0 -128.3

L-33 0.5 15.5 -8.7

L-30 -8.4 170.6 -97.6

L-29 -0.4 53.5 -9.4

L-31N 1.0 75.0 -77.9

L-31 2.0 94.0 -77.9
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Groundwater Flow

Governing Equations.  Regional groundwater flow (or simply groundwater flow) in the
SFWMM involves the solution of the partial differential equation (PDE) describing transient flow
in a two-dimensional, anisotropic, heterogeneous, unconfined aquifer.  The PDE is of  the form:

(2.4.3)

where:
          x and y =  Cartesian coordinates aligned along the major axes of hydraulic conductivity
                      or transmissivity;
    T  and T =  transmissivity tensors of the aquifer, (ft  /day);xx yy

2

                   h =  the unknown hydraulic or potentiometric head, (ft);
                   S =  unconfined aquifer storage coefficient or specific yield of the porous media;
                     vertically- averaged specific storage; volume of water released or taken into

    storage per unit cross-sectional area per unit change  in the hydraulic head
    in the aquifer, (dimensionless);

                   R =  recharge; volumetric flux per unit surface area, (ft/day); and
                    t =  time (day).

Equation (2.4.3) is strictly valid for confined aquifers only but is used in the model by allowing Txx

and T  to vary with time as saturated zone thickness changes (Wang and Anderson, 1982) sinceyy

transmissivity is the product of hydraulic conductivity (assumed to be time-invariant in the model)
and aquifer saturated thickness whose value varies as the location of the water table changes from
one time step to the next.  As mentioned in Sec. 1.3, one of the unique features of the model
domain is a highly permeable surficial aquifer.  Assuming full saturation, the variation of
transmissivity within the system can be shown using a contour map (Fig. 2.4.3).  The derivation of
the governing equation makes the following assumptions:

1. Flow is essentially two-dimensional such that transmissivity, storage coefficient,  recharge and
hydraulic head can be vertically averaged.

2. The fluid, water, is incompressible.
3. Hydraulic conductivity, as well as transmissivity, is symmetric and the axes can be  rotated

such that the off-diagonal terms in the tensor are zero.  In other words, the coordinate axes
are assumed to be aligned with the major trends controlling hydraulic conductivity, in which,
for example, flow in the x-direction is a result of the hydraulic gradient only in the x-direction. 
Thus, T  =  0 and T   =  0.xy yx

4. The momentum equation for an anisotropic medium is based on Darcy’s Law which relates
flow rate to an energy loss gradient by the hydraulic conductivity - Darcy’s proportionality
constant.

5. Drawdown or water table gradients are small relative to the saturated thickness.
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Figure 2.4.3 Surficial Aquifer Transmissivity Map for the South Florida Water Management
Model (v3.5)
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Since the saturated thickness b is a function of hydraulic head h at any given time, the two-
dimensional groundwater flow equation (2.4.3) is a nonlinear PDE.  It is sometimes called the
diffusion equation because it can be derived by performing a mass balance (continuity) and
momentum balance to describe the flow in a porous media.

In mathematical terms, Eq. (2.4.3) is classified as a parabolic partial differential equation that can
be solved using a variety of numerical techniques.  The SFWMM uses a variation of the Saul'yev
method to solve the PDE given boundary and initial conditions (Saul’yev, 1964).  The technique
is unconditionally stable and explicit (direct) such that no iteration is required within a single time
step.  Initially, the region to be modeled is subdivided into a block-centered grid network with
square and regular grid cells, i.e., )x = )y = constant.  The PDE is then transformed to its finite
difference approximation: a system of linear algebraic equations written for each grid cell in the
network.  Lastly, the system of equations is solved sequentially until all nodal heads (average
groundawater levels at grid cells) are determined.

Model Implementation.  In order to minimize bias (or error propagation), the system of linear
algebraic equations is solved in four different directions in four successive time steps.  Unlike the
overland flow subroutine, no time slicing is performed in the groundwater flow subroutine.  A
complete pass of all grid cells in the model domain is accomplished by one of the following
directions:
1. left-to-right starting with the southwestern corner cell of the model domain, proceeding from

the bottom row to the top row;
2. right-to-left starting with the northeastern corner cell of the model domain, proceeding from

the top to the bottom row;
3. bottom-to-top starting with the southwestern corner cell of the model domain, proceeding

from the left column to the right column; or
4. top-to-bottom starting with the northeastern corner cell of the model domain, proceeding

from the right column to the left column.

Thus, four passes, one of each in the above sequence, through the grid network takes four time
steps.  Using Saul'yev method, the finite difference approximation of Eq. (2.4.3) is varied slightly
depending on the direction by which the solution to the PDE is carried out.  A basic derivation
follows.

Consider the first term in Eq. (2.4.3).  By taking the centered difference at the computational grid
cell denoted by reference node (i,j) in terms of the midpoints and using a 0.5)x spacing, we
obtain

(2.4.4)

Expanding  in both terms on the right side yields
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(2.4.5)

where:
         Txx =  transmissivity between node (i,j) and node (i+1,j); andi+1/2,j

         Txx =  transmissivity between node (i-1,j) and node (i,j).i-1/2,j

The transmissivity terms can be evaluated at the midpoints of the grid cells.  Three commonly
used approximations are the arithmetic mean, geometric mean and harmonic mean, all of which
produce satisfactory results for most groundwater flow problems (Willis and Yeh, 1987). 
Average conductivities or transmissivities in the horizontal direction are typically obtained using
arithmetic means while those in the vertical direction are obtained using harmonic means.  If the
spatial distribution of the permeability follows a log-normal distribution, the average
permeabilities are calculated using geometric means (de Marsily, 1986).  Non-directional averages
are best estimated with geometric means.  In the SFWMM, transmissivities are evaluated as
arithmetic averages of transmissivities from adjacent nodes such that Txx   =  0.5 (Txx  +i+1/2,j i+1,j

Txx ) and Txx   =  0.5 (Txx  + Txx ).  If we let T  = 1/)x * Txx  and T   =  1/)x *i,j i-1/2,j i,j i-1,j x1 i-1/2,j x2

Txx , equality (2.4.5) can be simplified into:i+1/2,j

(2.4.6)

Using the same procedure for the y-derivative at node (i,j), we obtain

(2.4.7)

where:
                 T = 1/)y * Tyy  and T   =  1/)y * Tyy  .y1 i,j-1/2 y2 i,j+1/2

Next, the forward difference approximation of   relative to time t at the same reference node
(i,j) is:

(2.4.8)

By evaluating all space derivatives in terms of time step t, a simple explicit formulation of PDE
(2.4.3) results.  However, some combinations of )x and )t in such a formulation result in
numerical errors that could accumulate from one time step to the next, i.e., an explicit formulation
is only conditionally stable.  The Saul'yev method uses the computational efficiency of an explicit
scheme while maintaining stability.  This method takes advantage of the direction of calculations
in order to produce an explicit scheme based on an implicit formulation.  For directions 1. and 3.,
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the solution proceeds in the +x and +y directions.  Using Eqs. (2.4.6) through (2.4.8), the system
of linear algebraic equations approximating PDE (2.4.3) takes the form:

(2.4.9)

where:

(2.4.10)

Equation (2.4.9) is implicit because , , and  appear simultaneously in the
formulation.  However, since the scheme proceeds in the +x and +y directions, then all values to
the left (e.g.,  ) and below (e.g., ) the current cell (i,j) are known from a previous
calculation during the same time step t+1.  The method takes advantage of the direction of
calculations in space.  Thus, the unknown head  is solved in terms of head values from the
previous time step (old heads) and head values from the previous calculations (known or
boundary heads) at the nodes surrounding (i,j).

Similarly, for directions 2. and 4., the solution proceeds in the -x and -y directions; and
are known from previous calculations, and the corresponding system of linear algebraic

equations to be solved is:

(2.4.11)

Finally,  can be solved via:
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(2.4.12)

where the following applies to directions 1. and 3.:

(2.4.13)

(2.4.14)

(2.4.15)

(2.4.16)

while the following applies to directions 2. and 4.:

(2.4.17)

(2.4.18)

(2.4.19)

(2.4.20)

Figure 2.4.4 shows a typical computational grid used in the groundwater flow subroutine.  The
head at the grid cell denoted by (i,j) at time step t+1 is a function of the head at five adjacent cells,
including itself, evaluated at time steps t and t+1.  The selection of which cells to evaluate at a
particular time step depends on the current direction of calculations.
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Figure 2.4.4  Location of Grid Cells Used in Calculating Total Head at Grid Cell (i,j) During
Time Step t+1 as Implemented in the Groundwater Flow Subroutine in the South Florida Water
Management Model

Coupling of Groundwater and Surface Water

The solution to the governing groundwater flow equations [Eq. (2.4.3)] assumes a vertically
homogenous, i.e., constant hydraulic properties, soil column and applies only to the saturated
portion of the aquifer.  The thickness of the saturated zone is assumed to be “unbounded” during
the solution of the groundwater flow equations.  If the water surface elevation goes above ground
level, the assumption of homogeneity is violated: ponded water above land surface and saturated
water in the aquifer have different hydraulic properties.  The coupling of groundwater and surface
water is further complicated by the existence of an intervening zone of aeration (unsaturated
zone).  The thickness of the unsaturated zone varies as the location of the water table fluctuates
from one time step to the next.  The model maintains mass balance for the unsaturated zone as its
control volume changes with time.  However, detailed physical processes such as lateral
subsurface flow within this zone and capillary rise from the water table into the root zone are not
modeled in the SFWMM.

Part of the algorithm used in the groundwater flow subroutine is the adjustment of the hydraulic
or potentiometric heads just before and after the solution to the groundwater flow equations in
order to account for differences in aquifer and ponded water hydraulic properties.  These
adjustments are often done in the wetland areas, e.g. WCAs and ENP, where occasional drying
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and rewetting of model grid cells occur.  In these areas, the SFWMM assumes that the soil
column is dry above the water table and below land surface, i.e. the unsaturated zone is assumed
nonexistent.  In the irrigated areas of the Lower East Coast region, an unsaturated zone moisture
accounting procedure is performed (refer to Sec. 3.5).  Moisture is assumed to be uniformly
distributed within the unsaturated zone and always available for root uptake and plant
transpiration.

A brief description of the variable names pertinent to the current discussion is as follows:
    ells =  elevation of land surface, (ft NGVD);
        h =  hydraulic or potentiometric head; elevation of groundwater; location of the 

    water table within the soil column relative to a datum, (ft NGVD);
    For modeling purposes, this variable has a maximum value of land surface 
    elevation.

  infilt =  infiltration; equivalent depth of water crossing land surface; typically water 
    movement from ponding to the unsaturated zone, (ft);

   perc =  percolation; equivalent depth of water crossing the water table; typically water 
    movement from the unsaturated zone to the saturated zone, (ft);

  pond =  depth of ponding, (ft);
       S =  storage coefficient for a confined aquifer; equivalent to the specific yield for an 

    unconfined aquifer or the fraction (by volume) of water in a soil column              
   released from (or gained into) storage per unit area of aquifer per unit  decline     
   (or increase) in head, (dimensionless);

solmc =  soil moisture content in the unsaturated zone, (ft);
         t =  time step, (day); and
   whc =  water holding capacity in the unsaturated zone, (dimensionless); equivalent to

    field capacity or the drained upper limit or the fraction (by volume) of water in
    a soil column above which water will percolate past the root zone and into the
    saturated zone.

Prior to the solution of the groundwater flow equations, if ponding exists, the hydraulic heads
over the groundwater are reset to include the additional head provided by the ponded water, i.e.

h   =  h  + pond (2.4.21)t t t

A residual ponding term, whose value is equal to (1.0-S)*pond, is assumed not to take part in the
solution to the groundwater flow equations.  It is, however, added back to the computed heads in
order to maintain mass balance for each computational cell.  The SFWMM also assumes that
moisture in the unsaturated zone will not affect the solution to the groundwater flow equations. 
Moisture in this zone is updated at the end of the calculations if the computed heads encroach
upon the unsaturated zone.

If the computed head, h , goes above land surface, the final ponding depth is updated to includet+1

residual ponding and/or unsaturated zone moisture content.

pond   =  (h  - ells)*S  + (1.0-S)pond   +  solmc (2.4.22)t+1 t+1 t t



50

The final head is equal to land surface elevation, i.e., h   =  ells.t+1

If the computed head goes below land surface, residual ponding and unsaturated zone moisture
are added back to the aquifer.  Ponding depths and final heads are updated appropriately if the
combined effects of residual ponding and unsaturated zone moisture content is to saturate the
entire soil column.  Otherwise, the final ponding depth becomes zero and the unsaturated zone
mass balance is performed.  For accounting purposes, additional infiltration and percolation will
occur if residual ponding exist and percolation will increase if the water table encroaches upon the
unsaturated zone to an extent that will bring the moisture content in this zone at field capacity.

One of the strengths of the SFWMM is its ability to simultaneously describe the state of the
surface water and groundwater systems within the model domain.  This state is defined in terms of
ponding depths, unsaturated zone water content, and groundwater levels.  The formulation of the
recharge term (the combined effect of percolation, evapotranspiration, canal-groundwater
seepage, and aquifer withdrawal for domestic, industrial and irrigation purposes) in the Eq.
(2.4.3), levee seepage, and the procedure outlined in the preceding discussions comprise the
vertical coupling of groundwater and surface water in the model.

Figure 2.4.5 shows a block diagram of the physical processes simulated in the model for surface
and subsurface systems.  Rainfall is a process that moves water from the atmosphere into surface
storage.  Evapotranspiration is the movement of water from both surface and subsurface systems
into the atmosphere.  A canal, which is essentially a special form of surface storage, exchanges
water with ponding and the saturated zone storage through runoff/overbank flow and canal-
groundwater seepage, respectively.  Lastly, levee seepage is a localized flow phenomenon that
describes the movement of water from the aquifer across a major levee and into a borrow canal.

Figure 2.4.5  Generalized Block Diagram of Surface-Subsurface Interaction in the SFWMM


